
Personalizing Software and Web Services by Integrating
Unstructured Application Usage Traces

Longqi Yang†, Chen Fang‡, Hailin Jin‡, Matthew D. Hoffman
∗

, Deborah Estrin†

†Computer Science, Cornell Tech, Cornell University; ‡Adobe Research; * Google
†ylongqi@cs.cornell.edu, destrin@cornell.edu

‡{cfang, hljin}@adobe.com; *matt@matthewdhoffman.com

ABSTRACT
Users of software applications generate vast amounts of unstruc-
tured log-trace data. These traces contain clues to the intentions
and interests of those users, but service providers may find it diffi-
cult to uncover and exploit those clues. In this paper, we propose
a framework for personalizing software and web services by lever-
aging such unstructured traces. We use 6 months of Photoshop
usage history and 7 years of interaction records from 67K Behance
users to design, develop, and validate a user-modeling technique
that discovers highly discriminative representations of Photoshop
users; we refer to the model as utilization-to-vector, util2vec. We
demonstrate the promise of this approach for three sample appli-
cations: (1) a practical user-tagging system that automatically pre-
dicts areas of focus for millions of Photoshop users; (2) a two-
phase recommendation model that enables cold-start personalized
recommendations for many new Behance users who have Photo-
shop usage data, improving recommendation quality (Recall@100)
by 21.2% over a popularity-based recommender; and (3) a novel in-
spiration engine that provides real-time personalized inspirations
to artists. We believe that this work demonstrates the potential im-
pact of unstructured usage-log data for personalization.

Keywords
User modeling; application usage; recommendation

1. INTRODUCTION
Modern software services typically record user actions for the

purpose of collecting application usage statistics and reproducing
program errors. Relative to structured data traces, such as text, im-
age, and search queries, application usage records are noisy and
unstructured, and service providers may find it more difficult to ex-
tract value from them. Just as social interaction traces have enabled
great success in personalizing online communities, we explore how
integrating application usage traces can further empower novel, ef-
fective and personalized services, as shown in Fig. 1.

∗Work done while working at Adobe Research

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW’17 Companion, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4914-7/17/04.
http://dx.doi.org/10.1145/3041021.3054183

.

Application Usage Traces

Graphical/Photographical editing Programming Writing

action1 action2 action3 actionn…

user representation learning
(util2vec)

Web servicesSoftware services

Figure 1: Services that can benefit from the integration of
application usage traces. By leveraging user representations
learned from sequences of actions, we explore how software
service providers and social platforms can improve their per-
sonalized services and empower new user experiences.

In this paper, we explore this largely untapped space using data
from a large number of creative professionals who use Photoshop
for work and actively socialize on Behance1, a popular large-scale
online community where millions of professional photographers,
designers and artists share their artwork. We demonstrate that by
leveraging the data traces from shared users, Photoshop and Be-
hance can provide significantly improved personalized services and
create new user experiences. Our contributions in this work are
summarized below.

• We develop and evaluate an approach,util2vec, based on dis-
tributed representation learning, that produces high-quality rep-
resentations of Photoshop users. This model encodes the se-
quence patterns of the actions each user has performed, and sig-
nificantly outperforms the bag-of-actions representation by 31.72%
Mean Reciprocal Rank (MRR) on the user fingerprinting task
(Section 4).

• Based on this model, we present three sample applications:

1. We develop and evaluate a practical tagging system for Pho-
toshop users. The system, for the first time, is able to accu-
rately predict areas of focus for millions of Photoshop users,
who may or may not be active on Behance. Our model sig-
nificantly outperforms popularity-based tagging by 31% (Re-

1https://www.behance.net/

call@1), and is able to accurately predict long-tailed tags that
are important but unpopular among the broader population
(Section 5.1).

2. We propose a two-phase recommendation method that gen-
erates more accurate recommendations for cold-start users
on Behance by leveraging their previous Photoshop usage
traces. The performance improvements over the popularity
baseline are significant on all tested metrics including Area
Under Curve (AUC) (6.8%) and Recall@K (21.2% when K =
100). Ultimately, our model enables personalized recommen-
dations for a massive number of new users with Photoshop
usage histories (Section 5.2).

3. We design a novel application, named the inspiration engine,
for Photoshop users by leveraging the co-occurences of ap-
plication usage traces and uploaded art projects on Behance.
The qualitative results demonstrate how integrating these data
sources enable new user experiences (Section 5.3).

Although the data used in this paper comes from creative profes-
sionals, the models and frameworks studied may be applied to per-
sonalize services in a broader range of scenarios. Given the evolu-
tion of app ecosystems, user activities across stand-alone software
applications and social platforms are more easily associated via a
small number of identity systems, e.g., Gmail, Facebook, Creative
Cloud, Apple, and Github. This opens up a new and fruitful space
of future user-modeling research for service providers as well as
open source communities.

The technical content of this paper is structured as follows. We
introduce our dataset in Section 3, followed by the util2vec model
in Section 4. Then we present three models and applications lever-
aging usage traces in Section 5.

2. RELATED WORK
Our work benefits from and has implications to multiple threads

of user modeling research, and the util2vec model is inspired by
previous work on distributed representation learning.

2.1 Distributed representation learning
Distributed representation learning was first introduced in the

area of natural language processing [23]. The goal is to learn a
vector space for all words so that they can be used as inputs to
natural language understanding algorithms [21]. Recently, such
an approach has been extended and successfully applied to para-
graphs [17], medicine [4] and online purchases [8]. For instance,
Grbovic et al. [4] proposed a framework to learn a vector repre-
sentation for each product and user given the historical purchasing
records, and Choi et al. [4] demonstrated that a similar approach
can be applied to learn hierarchical representations for medical con-
cepts. Our util2vec framework is inspired by the previous research
efforts mentioned above, and to the best of our knowledge, this is
the first work to design a distributed representation learning algo-
rithm in the domain of software user modeling.

2.2 Intra- and cross- platform user modeling
in online social platforms

For online social platforms, personalization and user modeling
are important tasks, since appropriately matching customers and
products is a key to satisfactory user experiences [16]. Often, the
goal of such modeling is to derive a real-valued vector for each
user that summarizes his/her preferences, habits, and traits in online
social platforms. Previous work constructs user vectors by lever-
aging intra-platform interactions [24], e.g., ratings [16, 3], pur-
chases [13], content consumption [2, 25, 15], reviews [29], and

social networks [10, 9], or cross-platform interactions, e.g., per-
sonal data streams across email, Twitter, and Facebook [14], and
follower-followee connections across YouTube and Twitter [28].
Learned user representations have been shown to be effective in
many application domains, such as movie [3], television [15], arti-
cle [14, 26], e-commerce [13] and social network [9, 10, 2].

2.3 Software user and command modeling
Modeling software users’ proficiency based on the actions they

perform has been previously studied in the context of command-
recommendation systems [20, 18, 6]. The goal of such a recom-
mender is to help users learn commands in a complex software ap-
plication. However, the user modeling under such a circumstance
is limited to a specific application because of the narrow scope that
the modeling system is exposed to. In this work, we show that
by integrating application usage traces with online social interac-
tions, the potential applications that such data traces can empower
are much broader and diverse. Specifically, we demonstrate that
the Photoshop service provider can conduct better user tagging and
create new user experiences.

Another line of related work around application usage records at-
tempts to understand the semantic meanings of software actions [1,
7]. By training a word2vec model [21] on online documents, pre-
vious work [1] discovered correspondences and relationships be-
tween natural language and software actions, which was used to
fuel tutorial-recommender systems. Although our work is not di-
rectly optimized for this task, we can still extract semantic mean-
ings of actions and their relationships to users’ social interactions,
because the actions, along with the users, are embedded in the same
high-dimensional feature space (Section 4).

Although previous research on user modeling has achieved great
success, most models only consider data from within the online
social platforms. In our work, we demonstrate that by leveraging
users’ digital traces from application usage records, online social
platforms can better understand users and provide more effective
recommendations.

3. DATASET
We associate action histories from Photoshop with social inter-

actions on Behance through Creative Cloud accounts as people
use them to log into both services. The reasons why we choose
these two platforms are three-folded. (1) Photoshop is one of the
most popular computer software applications used by creative pro-
fessionals, and it is an indispensable daily component for people
across many creative occupations including graphical designer, pho-
tographer, and architect. Therefore, it is an ideal context in which
to study and impact users’ working behavior at a large scale. (2)
Behance possesses an abundant user base as millions of creative
professionals share their work and socialize with each other on the
platform. Also, it is one of the major websites for creative talent
search. (3) As Photoshop and Behance both serve creative profes-
sionals, there are many shared users for us to investigate.

In Photoshop, all of the actions performed in the application,
e.g., buttons clicked and features applied, are collected from the
users who enabled application usage reporting. An example of the
action sequence is shown in Fig. 2. We target a group of users
from the U.S. and their action histories from January 2015 to June
2015. We selected 22 billion actions from 3 million unique Pho-
toshop users. From the Behance platform, we collected users’ so-
cial interactions in three categories: (1) self-disclosed areas of fo-
cus, e.g., Cartooning, Interaction Design and Fashion; (2) user-
uploaded projects; and (3) users’ view and appreciate history on
these projects. An example of the collected information from Be-

[UID] [SID] 2015-03-09 22:22:16 Open
[UID] [SID] 2015-03-09 22:23:07 New_Slice
[UID] [SID] 2015-03-09 22:23:15 Resize_Slices
[UID] [SID] 2015-03-09 22:24:06 New_Guide
[UID] [SID] 2015-03-09 22:24:12 New_Guide
[UID] [SID] 2015-03-09 22:24:40 Copy_Slice
[UID] [SID] 2015-03-09 22:24:47 Drag_Slice
[UID] [SID] 2015-03-09 22:24:51 New_Guide
[UID] [SID] 2015-03-09 22:25:00 Copy_Slice
[UID] [SID] 2015-03-09 22:25:06 Drag_Slice
[UID] [SID] 2015-03-09 22:25:14 Copy_Slice
[UID] [SID] 2015-03-09 22:25:22 Drag_Slice
[UID] [SID] 2015-03-09 22:25:23 Delete_Slice
[UID] [SID] 2015-03-09 22:25:27 Copy_Slice
[UID] [SID] 2015-03-09 22:25:30 Drag_Slice
…

*UID: User ID *SID: Session ID

(a) An example of action sequence in Photoshop (b) An example of the collected user’s
social interactions on Behance

uploaded projects

areas of focus

projects viewed

Figure 2: Data samples of Photoshop usage records (left) and
social interactions on Behance (right). We collected three cate-
gories of social interactions for each user: projects viewed, self-
disclosed areas of focus and uploaded projects.

hance is shown in Fig. 2. In this paper, we select 0.86 million
behance users where 67 thousand of them are also among the Pho-
toshop users mentioned above.

4. SOFTWARE USER REPRESENTATION
In this section, we propose an accurate and robust user modeling

framework to model the action histories of software users. We start
by introducing the model, followed by implementation details and
performance evaluations.

4.1 util2vec framework
Given the action history Hu = (au

1,a
u
2, ...,a

u
n) from a software

user u, our goal is to learn a fixed-length real-valued vector vvvu that
represents his/her software usage pattern. We propose a framework
named util2vec to learn the user representation. In our framework,
each user or action is mapped to an M-dimensional vector, and the
vectors are trained to maximize the log probability, as defined in
eqn. 1, across all users.

1
T −2K ∑

u

T−K

∑
t=K

log p(au
t |au

t−K , ...,a
u
t+K \au

t) (1)

where T is the total number of actions from a given user, and K
is the farthest action before/after the prediction target that is used
as the context. In other words, the size of the sliding window is
2K + 1. Intuitively, the model optimized for the objective defined
in eqn. 1 will be able to predict any action given the context of the
user and the surrounding actions.

For the prediction, we use the softmax function to model the con-
ditional probability p(at |at−K , ...,at+K \ at) as follows (We omit
the superscripts of au

t where they are clear from context).

p(at |at−K , ...,at+K \at) =
eyat

∑i eyi
(2)

where the vector yyy = bbb+Wh(u,at−K , ...,at+K \ at ;V,X); the bias
vector bbb and weight matrix W are parameters of the model, and the
columns of the matrices V and X store the user and action represen-
tations respectively, i.e., vvvu =V [:,u] and xxxi = X [:, i] in numpy-style
notation. The parameters bbb,W,V , and X are learned during train-
ing. In the util2vec framework, we use a transfer function h that
averages or concatenates a user representation with representations
from 2K context actions, as Fig. 3 shows.

V X X X…

! "#$% "#$& "#'%

Concatenation/average (transfer function ℎ)

Softmax with negative sampling

"#

… X

"#'&

Figure 3: The architecture of util2vec model. The columns of V
and X store the user representations and action representations
respectively. While the action embedding X is shared across
different users, user embedding V is user-specific.

We use Stochastic Gradient Descent (SGD) to conduct the train-
ing. The model is trained with action histories from U unique Pho-
toshop users (U = 3 million), and the user and action represen-
tations are updated concurrently. After the model is trained, we
can infer a new user u’s representation vvvu by fixing the parameters
bbb,W,X and only fitting the vector vvvu to user u’s action history.

4.2 Implementation details
Along with util2vec, we use negative sampling and additional

action preprocessing steps to speed-up the training and reduce the
noise, which will be discussed next.

4.2.1 Negative sampling
It is expensive to compute the softmax function in eqn. 2, since

the denominator involves a sum over a large number of unique
actions. To avoid this cost, we replace the softmax loss with a
negative-sampling loss. This strategy has been successfully applied
in the word2vec model [21]. Specifically, for each instance, we ran-
domly sample S actions that are different from the target action at
and approximate the log probability log p(at |at−K , ...,at+K \at) as
follows:

log(σ(yat))+ ∑
s∈S

log(σ(−ys)) (3)

where S is a set of randomly sampled actions such that at 6∈ S, and
σ is the sigmoid function σ(x)≡ 1

1+e−x .

4.2.2 Preprocessing and parameter settings
Preprocessing: For each action, we keep it in the vocabulary

only if it is used by at least 100 unique users, and the final size of
the vocabulary is 1990. During the preprocessing, we also add a
special separation token [E] between two sessions to indicate the
boundary of action sequences.

Parameter settings: the hyper-parameters of our model are set
as follow: (1) the dimensionality of the representations, M, is set
to 500. (2) sampling window size, 2K +1, is set to 11, i.e., K = 5.
During training, we use 0.025 as the initial learning rate and sub-
tract it by 0.005 for each subsequent epoch (5 epochs in total). For
inference, we use 0.1 as the initial learning rate and subtract it by
0.02 for each subsequent epoch (5 epochs in total). Our parameter
settings are consistent with the previous work on word2vec [21],
although further tuning might yield better performance.

Table 1: User fingerprinting (hold-out session retrieval) perfor-
mance regarding Mean Reciprocal Rank (MRR). The improve-
ment is respect to the bag-of-actions+tf-idf.

Modeling framework MRR (± standard error of mean)

util2vec 0.8238± 0.0029
bag-of-actions + tf-idf

0.6037± 0.0037
(baseline)

bag-of-actions 0.5944± 0.0037

% of improvement 31.72%

4.3 User profiling performance
We evaluate the profiling performance of the util2vec model

with a user fingerprinting task. We start by holding out the 200
most recent sessions from Photoshop users who have at least 400
sessions in the first 6 months of 2015 (In total, 15,369 unique users
are selected). We then train the util2vec model over the rest of
the action sequences from 3 million Photoshop users. For each of
15,369 users, her action history Hi has been divided into training
sub-sequence, i.e., Htrain

i =Hi[:−200] and validation sub-sequence,
i.e., Hval

i = Hi[−200 :], and an ideal model should be able to link
Hval

i with Htrain
i based on generated profiles. We infer the user’s

representation based on the two subsequences respectively, i.e., in-
fer vvvtrain

i from Htrain
i and vvvval

i from Hval
i . For each user i and her

profile vvvtrain
i , we predict which validation subsequence belongs to

her using cosine similarities. More specifically, we sort all the vali-
dation subsequences Hval

j by the similarities between vvvval
j and vvvtrain

i
in a descending order, and the ranking of the user’s real validation
subsequence Hval

i is denoted as ranki. Finally, Mean Reciprocal
Rank (MRR), as defined in eqn. 4, is used to evaluate the overall
fingerprinting accuracy across N users (N = 15369).

MRR =
1
N

N

∑
i=1

1
ranki

(4)

We compare util2vec to the bag-of-actions model, which counts
the frequency with which each action ocurred. As shown in Ta-
ble. 1, our framework outperforms the baselines by 31.72% even
when tf-idf is leveraged to down-weight the frequent actions. The
experimental results demonstrate that our model is able to produce
user vectors that are more representative and have stronger discrim-
inative power. Generally speaking, for a given user, our represen-
tation is able to discriminate against 31.72% more distractors, and
in practice, software service providers can use such representations
to better fingerprint each user.

Along with the user representations, util2vec also learns an ac-
tion embedding X that encodes semantic similarities between ac-
tions. For example, we present the nearest neighbors of five Pho-
toshop actions in Table. 2 (the neighbors are ranked by the cosine
similarities between action embeddings in descending order), and
the retrieval results show that the actions are grouped by their func-
tionalities and usage affinities. The action embeddings may also be
useful for the service improvements as it tells the common software
usage patterns among the population. Given the scope of this paper,
we leave further investigation as future work.

5. APPLICATIONS
In this section, we build and present three applications that can

benefit from the integration of such usage traces: software user tag-
ging, cold-start art project recommendation and inspiration engine.

5.1 Software user tagging
User tagging is an important task for software service providers,

as accurate tags are fundamental to effective business and ads tar-
geting, personalization and recommendation. Essentially, the goal
of user tagging is to assign a set of relevant tags to users based on
her behavior in the platform. For Photoshop, in particular, the tag-
ging task is to predict users’ areas of focus based on the software
usage patterns. For example, an ideal tagging system should be able
to predict whether an user is focusing on web design, UI/UX or ar-
chitecture based on the tools that she uses. Traditionally, building
such a user tagging system requires a significant amount of domain
knowledge and human labor to bootstrap the training labels. The
expert software developers need to manually examine the raw usage
histories and come up with the tags for a large number users. As
imagined, such a human labeling process subjects to diverse human
expertise in recognizing the patterns and is inevitably error-prone
and incomprehensive.

We build an accurate Photoshop user tagging system with min-
imal human efforts by leveraging interactions on Behance. It is
based on the observation that nowadays, people self-disclose their
expertise and areas of focus in many social platforms for socializ-
ing and job hunting. By leveraging the self-disclosed tags from Be-
hance and the accurate user representations derived from util2vec,
we are able to build a user tagging system that is more accurate and
robust than other approachs.

5.1.1 User tagging model
Formally speaking, given U users, along with their self-disclosed

tags from Behance, tttu and representations vvvu derived from Photo-
shop usage traces (tttu is a D-dimensional one-hot encoded vector,
where D is the size of the tag set), we learn a user tagging model
f that takes vvvu as input and produces an output to approximate tttu.
As suggested in the image tagging tasks, we train the user tagging
model by minimizing the following sigmoid cross-entropy loss:

− 1
U ∑

u
tttu log(σ(f (vvvu)))+(1− tttu) log(1−σ(f (vvvu))), (5)

where the value of the j-th element in tttu is 1 if the j-th tag is se-
lected by the user u, 0 otherwise. Theoretically, model f can be any
linear or non-linear function. In this paper, we use the linear projec-
tion, i.e., f (vvvu) = bbb+Wvvvu, though adding non-linear components
such as multi-layer perceptron (a.k.a. deep neural networks) might
potentially improve the performance.

We train the model using limited-memory BFGS (l-bfgs) [19]
over the areas that are indicated by at least 100 active users on Be-
hance. With such a filtering criteria, we finally keep 67 labels in the
tag pool, which includes, to name but a few, Graphic Design, Mo-
tion Graphics, Character Design, Cinematography, Icon Design
and Computer Animation. Then for any Photoshop user (without
any requirement to be on Behance), we can assign tags by running
the classifier over her application usage history.

5.1.2 Evaluation and analysis
To demonstrate the effectiveness of our tagging system, we con-

duct an evaluation against 65,331 users who have labeled them-
selves with at least one of the 67 tags. In the final dataset, each
user is associated with 1 to 5 tags. We randomly divide the users
into a training set and a validation set, which consists of 45,331 and
20,000 samples respectively. The baseline approach that we com-
pare to ranks the tags purely based on their number of appearances
on the Behance platform. While simple, such a comparison directly
reflects the feasibility and reliability of the tagging system, and it
is the best we can achieve without our tagging model. We use the

Table 2: 5-nearest neighbors of the selected actions in action embedding X . The actions in the first row are the index, and the five
actions below are the corresponding nearest neighbors. (From left to right, the actions are related to video editing, font awesome
icons, blur filters, path manipulations and shadow effects, respectively.)

modify_video_clip fa_times delete_smart_filter_blur drag_path inner_shadow

modify_video_clip_audio
set_work_area_start

add_audio_clips
mute_audio_track
modify_audio_clip

fa_user
fa_bars

fa_home
fa_map_marker

fa_plus

edit_filter_effect_blur
edit_filter_blending_options_blur

delete_smart_filter_blur_more
delete_smart_filter_gaussian_blur

enable_filter_effect_blur

duplicate_paths
nudge_paths
scale_paths

drag_anchor_points
distribute_horizontal_centers

inner_glow
bevel_emboss

gradient_overlay
clear_effects
drop_shadow

Table 3: User tagging performance in terms of Recall@K. We use bold font for the best performed approach and feature set. The
percentage of improvements are the comparison between util2vec (bolded), and popular tags. Our tagging system outperforms
popularity tags baseline by 31.0% and 35.0% regarding Recall@1 and Recall@2 respectively.

Recall@K 1 2 3 4 5

tagging with software usage data
util2vec features (500 dim) 0.2320 0.3569 0.4466 0.5140 0.5691

bag-of-actions+tf-idf features (1990 dim) 0.2246 0.3489 0.4352 0.5017 0.5559

tagging without software usage data popular tags (baseline) 0.1771 0.2644 0.3644 0.4309 0.4781

% of improvements 31.0% 35.0% 22.6% 19.3% 19.0%

average recall rate, Recall@K, as defined below, to quantitatively
compare the tagging performance.

Recall@K =
number of correct tags in top K predictions
total number of tags in the ground truth set

(6)

The results in Table. 3 show that the models leveraging software
usage history significantly outperform the baseline that is agnostic
to such information, and the improvements are particularly remark-
able for top-ranked tags—the system achieves 31.0% and 35.0%
improvements in terms of Recall@1 and Recall@2 respectively.
This justifies that, practically, our system can not only predict tags
that are popular, but the ones that are long-tailed. Ultimately, our
tagging system can make accurate predictions for millions of Pho-
toshop users, who may or may not be active on Behance, and it is
valuable to enable customized business for the service provider.

Qualitatively, we show the outputs of two tagging approaches
for 6 representative Photoshop users in Fig. 4. For each user, we
present the ground truth tags, the tags predicted by our system and
the popular tags. In addition, we include user’s Behance portfolio
(uploaded projects) side-by-side for the illustration purpose. But
this information is not available to the tagging algorithm under any
circumstance2. From Fig. 4, we find that our tagging model is es-
pecially advantagous in the following aspects.

• Tag diversity. We can accurately predict a diverse array of areas
of focus based on the Photoshop usage traces, e.g., Photography
(U1, U4), Fine Arts (U1), Web Design (U5), Typography (U2),
Cartooning (U3), Animation (U4) and Painting (U6) etc. The
tags can be popular on the platform, e.g. Graphic Design and
Photography, or long-tailed (infrequent), e.g. Motion Graphics,
Cartooning and Painting etc. The prediction results justify the
robustness of our system when it is applied to diverse application
usage patterns.

• Generalization power. Although there is a high correlation be-
tween user tags and apperances of uploaded art projects, as shown

2The tagging model is mainly designed to classify Photoshop users
who do not have Behance profile.

in Fig. 4, some users didn’t exhaustively select all of the tags that
are related. This limitation is partially addressed by the general-
ization power of our linear classifier. For example, based on U1’s
portfolio (images with same content but different coloring), there
is a high chance that she is focusing on retouching, which is not
selected by herself. Nevertheless, our system can still make rea-
sonable predictions that include retouching in the top tags. This
characteristic is further verified in the U6 example (tag Draw-
ing).

Overall, we have shown that by modeling application usage traces,
we are able to build an accurate and practical user tagging system
for Photoshop with minimal human effort.

5.2 Cold-start art project recommendation
Cold-start is a well-known hard problem in the design of mod-

ern recommender systems. Specifically, user-cold-start [14] refers
to the scenario where the recommendations are targeting new users,
and item-cold-start [12] describes the case when a new item needs
to be included in the recommendation pool. In user-cold-start,
since we lack the information of her activities within a platform,
a typical solution is to either recommend the most popular items,
which is not personalized, or leverage side information, such as
gender, age [22] and personal data traces [14]. However, in many
cases, when a new user shows up in online social platforms, their
application usage records are already available. If we could lever-
age these data traces and properly use them to inform the recommeder,
there is a great potential for the social platforms to improve their
cold-start recommendations. For example, Behance might be able
to generate better recommendations for 3 million Photoshop users,
which is almost 4 times the current number of Behance users. In
this section, we propose a two-phase recommendation framework
that leverages Photoshop usage data in recommending artistic projects
on Behance.

5.2.1 Two-phase recommendation framework
Our recommendation framework is inspired by previous research

on content-based music recommendation [25] that incorporates au-

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Photography Digital Photography Fashion Fine Arts Retouching

Self-disclosed tags (Ground truth) Photography Digital Photography Fine Arts

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Illustration Digital Art Character Design Cartooning Graphic Design

Self-disclosed tags (Ground truth) Illustration Digital Art Cartooning

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Graphic Design Branding Typography Print Design Illustration

Self-disclosed tags (Ground truth) Graphic Design Print Design Typography

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Graphic Design Motion Graphics Photography Digital Art Animation

Self-disclosed tags (Ground truth) Motion Graphics Photography Animation

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Web Design Web Development UI/UX Graphic Design Branding

Self-disclosed tags (Ground truth) Web Design Web Development Graphic Design

Method R1 tag R2 tag R3 tag R4 tag R5 tag

popular tags Graphic Design Illustration Photography Branding Art Direction

user2vec predictions Illustration Graphical Design Drawing Digital Art Painting

Self-disclosed tags (Ground truth) Illustration Painting Digital Art

1 2

3 4
5

*Note that users’ portfolios are included only for illustration purpose. All of the tag predictions are solely based on users’ Photoshop usage traces.

6

Figure 4: Six user tagging examples with two different approaches. For each user, we show her portfolio, top 5 tag predictions with
util2vec feature, top 5 most popular tags and self-disclosed tags. The tags with orange color are the correct predictions, and the ones
with green color are the ones that are inferrable from the portfolio but not explicitly selected by the user.

… …

users’ latent
factors

!

items’ latent
factors

items’ biasusers’ software
usage features

Step 1Step 2

"# "$ %$&#

Figure 5: Two-phase recommendation framework. In step 1,
we derive users’ latent factors and items’ latent factors and bias
from their implicit feedback (project views). In step 2, we learn
a projection function f to map software usage features to the
corresponding users’ latent factors.

dio features in solving the item-cold-start problem. We take ad-
vantage of the opportunity that a portion of Photoshop users are
already active on Behance and have left a significant amount of im-
plicit feedbacks, e.g., project views. Therefore, to build the recom-
mendation pipeline, we first learn users’ and items’ latent factors
from their project views and then build a function to map the appli-
cation usage features extracted from util2vec or bag-of-actions, to
the latent factors. In production, for any Photoshop user, the sys-
tem conducts cold-start recommendations by first predicting user’s
latent factors based on her application usage data, and then ranking
the items accordingly in the latent space. Formally speaking, we
build the cold-start recommendation system with the following two
steps (Fig. 5).

Step 1. The goal of the first step is to learn each user u’s latent
factors lllu, and each item e’s latent factors llle and bias be, such that
the value of rue, which is defined as rue = lllT

u llle +be, is proportional
to user u’s preference level towards item e. We learn the parame-
ters by leveraging users’ project views on the platform. Consider-
ing that such signals are implicit feedback, as suggested by [27],
we propose to minimize the following Weighted Approximately

Table 4: Art project recommendation performance for cold-start users in terms of Recall@K and Areas Under Curve (AUC). We
use bold font for the best performed approach and feature set. The percentage of improvements are the comparison between the
approach with bold font, and baseline method (popular items).

Recall@K 100 200 300 400 500 AUC
cold-start recommendation
with software usage data

util2vec features (500 dim) 0.0143 0.0213 0.0261 0.0313 0.0356 0.8202
bag-of-actions+tf-idf features (1990 dim) 0.0138 0.0209 0.0269 0.0309 0.0350 0.8166

cold-start recommendation
without software usage data

popular items (baseline) 0.0118 0.0188 0.0218 0.0281 0.0297 0.7683

% of improvements 21.2% 13.3% 23.4% 11.4% 19.9% 6.8%

drag_path

enable_filter_effec
t_lighting_effects

rotate_canvas

action Top 10 nearest neighbors in the util2vec embedding space

fade_smart_blur

Figure 6: Four image retrieval results of the inspiration engine using single action. The retrieval results reflect the context where
each action is often used. For example, with fade_smart_blur, returned images have blurred background and fading effects, and with
rotate_canvas, images tend to have repetitive patterns.

a1, a2, a3, …, an !

util2vec embedding

Figure 7: The algorithm framework for the inspiration engine.
We learn a function g to project image features to the util2vec
embedding space such that true actions-image pairs are close
to each other and false pairs are father away.

Ranked Pairwise (WARP) loss:

∑
u,e∈Pu,e′∈S\Pu

ln(
Y

Me′
)
∣∣∣1− lllT

u llle−be + lllT
u llle′ +be′

∣∣∣
+
, (7)

where S denotes the set of all items, Pu denotes the set of items
viewed by user u, Y denotes the total number of items, and Me′ de-
notes the number of negative sampling conducted before encoun-
tering an item e′ that produces non-zero loss. In other words, dur-
ing training, for each item that the user viewed, we keep sampling
negative items e′ until 1+ lllT

u llle′ +be′ > lllT
u llle +be is satisfied.

Step 2. In the second step, we learn a projection function f
that takes a user’s software usage feature vvvu as input and produces
output f (vvvu) to approximate her latent factors lllu. We propose to
minimize the l2 loss ∑u‖ f (vvvu)− lllu‖2 for regression.

In this paper, we use a linear function f , i.e., f (vvvu) = bbb+Wvvvu.
However, any non-linear function should be directly applicable here,
which we leave to future work. During training, for step 1, the pa-
rameters are learned with mini-batch Adagrad [5], the dimension-
ality of the latent factors and learning rate are set to 50 and 0.05
respectively. For step 2, we use l-bfgs to find the optimal solution
since the optimization target is convex.

In practice, for any cold-start user u and her Photoshop usage
feature vvvu, the items’ recommendation rankings are based on the
value of rue = f (vvvu)

T llle + be where the item with higher value of
rue will be recommended earlier.

5.2.2 Evaluation and analysis
We evaluate the performance of our cold-start recommendation

system by holding out a validation set from the view histories of
67,805 users. We randomly sample 10,000 users among the people
who have viewed at least one project after July 1st, 2015 and regard
them as the cold-start users. The most recent viewed project epu

from each cold-start user u is then held for validation, and the rest
57,805 users’ complete view histories are used for training. All
the items appear in the training set are included in the items pool,
which yields 5.8 million candidates for recommendation. The time

restriction is used to guarantee the causality of recommendation as
the Photoshop usage data is collected from the first 6 months of
2015. During the validation, for each cold-start user, we only use
her software usage data to make the preference prediction, without
relying on any previous views. Therefore, our evaluation results
can properly reflect the system performance when serving cold-
start users in practice.

We compare our recommender to the baseline algorithm that
ranks the items based on their popularity (total number of views re-
ceived). This is shown to be a very strong baseline for the cold-start
recommendations [14]. Similar to user tagging, we use Recall@K
defined in eqn. 8 and Area Under ROC Curve (AUC) defined in
eqn. 9 to evaluate the recommendation performance (N=10,000).

Recall@K =
1
U

U

∑
u=1

δ (epu in the top K items for u) (8)

AUC =
1
U

U

∑
u=1

∑e′ δ (f (vvvu)
T lllepu

+bepu
> f (vvvu)

T llle′ +be′)

size of the items pool
(9)

The experimental results shown in Table. 4 demonstrate that all
of the recommenders that leverage the Photoshop usage traces and
two-phase recommendation framework perform significantly bet-
ter than the baseline in terms of Recall@K and AUC. For top-
ranked items (Recall@100), in particular, our recommender out-
performs the popularity based recommendation by 21.2%, which
means that the users will potentially appreciate 21.2% more items
among which we recommend. Also, the performance improvement
suggests that we are able to personalize item recommendations to
creative professionals who are new to the Behance platform.

5.3 Inspiration engine
In this section, through a sample application named inspiration

engine, we demonstrate that the data integration can also enable
innovative user experiences. The goal of inspiration engine is to
provide real-time and personalized inspirations for creative profes-
sionals when they are working in Photoshop, and the system is able
to show the potential outcomes of the actions that have been or are
likely to be performed. Such presentations are inspiring because
the artists can explore a wider range of possibilities that are related
but different from their current work.

Technically speaking, the core component of such an application
is a search engine that returns art projects likely to be produced
by a given sequence of Photoshop actions. We build the system
by leveraging the weak correspondence between the pairs of users’
Photoshop usage traces and the projects that they uploaded to Be-
hance. With such pairs, we can learn a heterogeneous joint em-
bedding where the true actions-image pairs are close to each other,
and the false pairs are further away. As shown in Fig. 7, for each
actions-image pair ((ai

1,a
i
2, ...,a

i
n),ci), i= 1,2, ...,n, we first extract

features for the action sequence and the image respectively, denoted
as vvvi and zzzi. In our prototype, we extract vvvi from util2vec and zzzi
from the pooling layer (2048 dim) of pre-trained ResNet [11], the
state-of-the-art image feature extractor. Then we learn a function g
to project image features zzzi to the util2vec embedding space such
that the objective ∑i‖vvvi−g(zzzi)‖2 is minimized.

To prototype the system, we train a linear projection function g
with 353,205 actions-image pairs from 43,441 users and validate it
over 20,000 held-out pairs from 20,000 users, i.e., each user con-
tributes exactly one pair in the validation. There is no user overlap
in the training and validation set, and the training is conducted us-
ing l-bfgs algorithm. Quantitatively, we use Recall@K and AUC as
defined in Section 5.2 to evaluate the system performance, and the

Table 5: Action-image retrieval performance in terms of Re-
call@K. We use bold font for the best performed approach.

Recall@K 100 300 500 AUC

inspiration engine
0.0244 0.0603 0.0884 0.6646

(util2vec features)
inspiration engine

0.0181 0.0488 0.0741 0.6357
(bag-of-actions+tfidf)

random guess 0.005 0.015 0.025 0.5

results are shown in Table. 5. The improvements over the random
guess baseline justify that there is a close relationship between the
Photoshop usage pattern and visual appearance of art project. In
addition, in Fig. 6, we show four qualitative retrieval results of the
inspiration engine (we only show retrieval with a single action, but
our technique is applicable to action sequence as well). The near-
est neighbors of each action reflect the scenarios where it is often
used. For example, the action drag_path is heavily used in web
design, and the rotate_canvas is typically leveraged to create repet-
itive patterns. We will conduct an end-to-end further user study in
the future to evaluate the engine.

Through three applications, we observe that the amount of im-
provements brought by util2vec, compared to the intuitive bag-of-
actions+tfidf model, are contingent on the context of end applica-
tions. Nevertheless, the performance improvements are significant
under most of the metrics except Recall@300 in the cold-start rec-
ommendation task, so we can safely conclude that util2vec is ben-
eficial in modeling unstructured application usage traces, and we
may get further gains in the future by tuning the model parameters
and training methods.

6. CONCLUSIONS AND FUTURE WORK
In this work, we personalize software and web applications for

creative professionals by leveraging Photoshop usage traces. These
systems can enhance existing services provided by Photoshop (i.e.,
accurate prediction of users’ areas of focus, Section 5.1) , and Be-
hance (i.e., personalized recommendation for cold-start users, Sec-
tion 5.2), and enable new experiences (i.e., inspiration engine, Sec-
tion 5.3) for millions of users.

Although we focus on platforms for creative professionals, our
results suggest that such an integration may be fruitful for personal-
ization research more generally. For example, personalized appli-
cations can be built for programmers based on their Github usage
records, and for journalists based on the usage of document edit-
ing tools. As people’s work and leisure lives are increasingly ac-
companied by applications, understanding and integrating digital
breadcrumbs that they leave behind can lead to truly user-centric
personalization.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their in-

sightful comments. This work is supported by Adobe Research gift
funding and The AOL-funded Connected Experiences Lab (http:
//cx.jacobs.cornell.edu/). The first author conducted part of
this research at Adobe Research as a summer intern and is further
supported by the small data lab at Cornell Tech, which receives
funding from NSF, NIH, RWJF, MacArthur Foundation, Google,
and UnitedHealth Group.

http://cx.jacobs.cornell.edu/
http://cx.jacobs.cornell.edu/

8. REFERENCES
[1] E. Adar, M. Dontcheva, and G. Laput. Commandspace:

modeling the relationships between tasks, descriptions and
features. In Proceedings of the 27th annual ACM symposium
on User interface software and technology, pages 167–176.
ACM, 2014.

[2] D. Agarwal, B.-C. Chen, Q. He, Z. Hua, G. Lebanon, Y. Ma,
P. Shivaswamy, H.-P. Tseng, J. Yang, and L. Zhang.
Personalizing linkedin feed. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1651–1660. ACM, 2015.

[3] J. Bennett and S. Lanning. The netflix prize. In Proceedings
of KDD cup and workshop, volume 2007, page 35, 2007.

[4] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, and J. Sun.
Multi-layer representation learning for medical concepts.
arXiv preprint arXiv:1602.05568, 2016.

[5] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159,
2011.

[6] M. Ekstrand, W. Li, T. Grossman, J. Matejka, and
G. Fitzmaurice. Searching for software learning resources
using application context. In Proceedings of the 24th annual
ACM symposium on User interface software and technology,
pages 195–204. ACM, 2011.

[7] C. A. Fraser, M. Dontcheva, H. Winnemoeller, and
S. Klemmer. Discoveryspace: Crowdsourced suggestions
onboard novices in complex software. In Proceedings of the
19th ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion, pages 29–32.
ACM, 2016.

[8] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati,
J. Savla, V. Bhagwan, and D. Sharp. E-commerce in your
inbox: Product recommendations at scale. In Proceedings of
the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1809–1818.
ACM, 2015.

[9] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel,
S. Yogev, and S. Ofek-Koifman. Personalized
recommendation of social software items based on social
relations. In Proceedings of the third ACM conference on
Recommender systems, pages 53–60. ACM, 2009.

[10] I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and E. Uziel.
Social media recommendation based on people and tags. In
Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information
retrieval, pages 194–201. ACM, 2010.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[12] R. He and J. McAuley. Vbpr: visual bayesian personalized
ranking from implicit feedback. arXiv preprint
arXiv:1510.01784, 2015.

[13] R. He and J. McAuley. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative
filtering. In Proceedings of the 25th International Conference
on World Wide Web, pages 507–517. International World
Wide Web Conferences Steering Committee, 2016.

[14] C.-K. Hsieh, L. Yang, H. Wei, M. Naaman, and D. Estrin.
Immersive recommendation: News and event
recommendations using personal digital traces. In
Proceedings of the 25th International Conference on World

Wide Web, pages 51–62. International World Wide Web
Conferences Steering Committee, 2016.

[15] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE
International Conference on Data Mining, pages 263–272.
Ieee, 2008.

[16] Y. Koren, R. Bell, C. Volinsky, et al. Matrix factorization
techniques for recommender systems. Computer,
42(8):30–37, 2009.

[17] Q. V. Le and T. Mikolov. Distributed representations of
sentences and documents. In ICML, volume 14, pages
1188–1196, 2014.

[18] W. Li, J. Matejka, T. Grossman, J. A. Konstan, and
G. Fitzmaurice. Design and evaluation of a command
recommendation system for software applications. ACM
Transactions on Computer-Human Interaction (TOCHI),
18(2):6, 2011.

[19] D. C. Liu and J. Nocedal. On the limited memory bfgs
method for large scale optimization. Mathematical
programming, 45(1-3):503–528, 1989.

[20] J. Matejka, W. Li, T. Grossman, and G. Fitzmaurice.
Communitycommands: command recommendations for
software applications. In Proceedings of the 22nd annual
ACM symposium on User interface software and technology,
pages 193–202. ACM, 2009.

[21] T. Mikolov and J. Dean. Distributed representations of words
and phrases and their compositionality. Advances in neural
information processing systems, 2013.

[22] S.-T. Park and W. Chu. Pairwise preference regression for
cold-start recommendation. In Proceedings of the third ACM
conference on Recommender systems, pages 21–28. ACM,
2009.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Cognitive
modeling, 5(3):1, 1988.

[24] L. Tang, B.-C. Chen, D. Agarwal, and B. Long. An empirical
study on recommendation with multiple types of feedback.
In Proceedings of the 22th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
ACM, 2016.

[25] A. Van den Oord, S. Dieleman, and B. Schrauwen. Deep
content-based music recommendation. In Advances in Neural
Information Processing Systems, pages 2643–2651, 2013.

[26] C. Wang and D. M. Blei. Collaborative topic modeling for
recommending scientific articles. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 448–456. ACM, 2011.

[27] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to
large vocabulary image annotation. 2011.

[28] M. Yan, J. Sang, and C. Xu. Mining cross-network
association for youtube video promotion. In Proceedings of
the 22nd ACM international conference on Multimedia,
pages 557–566. ACM, 2014.

[29] F. Zhang, N. J. Yuan, K. Zheng, D. Lian, X. Xie, and Y. Rui.
Exploiting dining preference for restaurant recommendation.
In Proceedings of the 25th International Conference on
World Wide Web, pages 725–735. International World Wide
Web Conferences Steering Committee, 2016.

	Introduction
	Related Work
	Distributed representation learning
	Intra- and cross- platform user modeling in online social platforms
	Software user and command modeling

	Dataset
	Software User Representation
	util2vec framework
	Implementation details
	Negative sampling
	Preprocessing and parameter settings

	User profiling performance

	Applications
	Software user tagging
	User tagging model
	Evaluation and analysis

	Cold-start art project recommendation
	Two-phase recommendation framework
	Evaluation and analysis

	Inspiration engine

	Conclusions and Future Work
	Acknowledgements
	References

